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In this paper, the regular reflection (RR) to Mach reflection (MR) transition of
asymmetric shock waves is theoretically studied by employing the classical two- and
three-shock theories. Computations are conducted to evaluate the effects of expansion
fans, which are inherent flow structures in asymmetric reflection of shock waves, on
the RR → MR transition. Comparison shows good agreement among the theoretical,
numerical and experimental results. Some discrepancies between experiment and
theory reported in previous studies are also explained based on the present theoretical
analysis. The advanced RR → MR transition triggered by a transverse wave is also
discussed for the interaction of a hypersonic flow and a double-wedge-like geometry.

1. Introduction
It is well known that for shock wave reflection in a steady flow at a sufficiently high

Mach number, more than one global solution is compatible with the conservation
laws and the applied boundary conditions. This leads to what is known as the dual
solution. In the dual-solution domain, both regular and Mach reflection patterns
(denoted by RR and MR) are locally stable for a given time history, as shown
in figure 1. Intensive analytical, experimental and numerical investigations have
contributed much to the understanding of the physics underlining shock wave
reflection in the last few decades. The reflection phenomena of shock waves in
steady, pseudo-steady and unsteady flows were summarized by Ben-Dor (1991). Shock
polars for two-dimensional shock wave interactions are bounded and not monotonic,
which may, consequently, have no intersection or more than one intersection in the
graphical construction. When no intersection exists, the problem of non-existence is
resolved with more complex wave patterns: either with transonic curved shocks or
with composite wave patterns. The wave patterns of the former are not steady but
may be pseudo-steady. Composite wave patterns, including single-Mach reflection,
transitional-Mach reflection and double-Mach reflection, consist of multiple simple
nodes separated by smoothly varying flows (see Henderson 1990; Henderson, Colella
& Puckett 1991; Henderson & Menikoff 1998). In these cases, the time-dependent
boundary conditions or downstream boundary conditions can cause a wave pattern
to bifurcate or change the form. Bifurcations can be triggered by acoustic waves
impacting a node or can be forced by a sudden change in geometry. The state of the
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Figure 1. Schematic illustration of (a) an overall RR wave configuration and (b) an overall
MR wave configuration in steady flows.
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Figure 2. Pressure-deflection polars illustrating various theoretically admissible solutions in
the reflection of symmetric shock waves in steady flows.

knowledge in this research field was demonstrated by Ben-Dor (1991) and was then
reviewed by Ben-Dor (2006).

It was von Neumann (1943) who first introduced the criteria for the RR ↔ MR
transitions. The criteria are given by the detachment condition, beyond which RR
wave configuration is theoretically inadmissible, and by the von Neumann condition,
beyond which MR configuration is theoretically inadmissible. Both RR and MR
wave configurations are theoretically admissible inside the parameter space bounded
by these two conditions. Figure 2 schematically shows the transition criteria for
the interaction of shock waves of opposite families generated by two symmetrically
arranged wedges or for reflection of a single shock wave over a horizontal plate.
In figure 2, points b and c correspond to the von Neumann condition and the
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Figure 3. Pressure-deflection polars illustrating various theoretically admissible solutions in
the reflection of asymmetric shock waves in steady flows (according to the detachment and
the von Neumann criteria hypothesized by Li et al. 1999).

detachment condition, respectively, while points a and d denote an overall RR
solution and an overall MR solution, respectively. Hornung, Oertel & Sandeman
(1979) first hypothesized that hysteresis could be present during the RR ↔ MR
transition process. With increasing wedge angle the RR → MR transition occurs
near the detachment condition, while with decreasing wedge angle the MR → RR
transition occurs at the von Neumann condition. The hysteresis phenomenon has
been proved by experiments (see Chpoun, Passerel, Li & Ben-Dor 1995; Skews 1997,
2000; Li, Chpoun & Ben-Dor 1999; Ivanov et al. 2001; Sudani et al. 2002) and
computations (see Chpoun & Ben-Dor 1995; Vuillon, Zeitoun & Ben-Dor 1995;
Ivanov et al. 1996, 2002; Henderson, Crutchfield & Virgona 1997; Ben-Dor, Elperin
& Vasilev 1999; Kudryavtsev et al. 2002). Ben-Dor et al. (2002) reviewed the hysteresis
process.

As shown in figure 1(a), an overall RR wave pattern consists of two incident shock
waves (i1 and i2), two reflected shock waves (r1 and r2), one slipstream (s) and two
Prandtl–Meyer expansion fans (pm1 and pm2). These discontinuities excluding pm1

and pm2 meet at a single node (R). The boundary condition for an overall RR is

θ1 − θ3 = θ2 − θ4 = δ, (1.1)

where θ1, θ2, θ3 and θ4 are the flow deflection angles across i1, i2, r1 and r2, respectively.
As symmetric reflection with θ1 = θ2 = θ3 = θ4, δ = 0 causes the slipstream to disappear.
An overall MR wave pattern, as shown in figure 1(b), is more complicated than an
overall RR wave pattern. A Mach stem (m) bridges two triple points, T1 connecting
i1, r1 and s1 and T2 connecting i2, r2 and s2. The boundary conditions for an overall
MR are

θ1 − θ3 = δ1, θ2 − θ4 = δ2. (1.2)

When θ1 = θ2, the reflection is symmetric with δ1 = δ2.
Supported by analytical and experimental results, Li et al. (1999) proposed the

corresponding transition criteria for the reflection of asymmetric shock waves. As
shown in figure 3, the points b and d respectively correspond to the von Neumann
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condition and the detachment condition. Hysteresis occurs between b and d during
the RR ↔ MR transition. Several different wave patterns that are theoretically
impossible in a symmetric reflection were illustrated in their analytical work (see Li
et al. 1999). First, one of the RRs in an overall RR wave configuration (oRR
(wRR + sRR)) is theoretically admissible as a strong solution. Secondly, it is
theoretically possible that one of the MRs in an overall MR wave configuration
(notated as oMR (InMR + DiMR)) is an inverse MR (InMR, denoted as the wave
pattern of a degenerate cross node by Henderson et al. 1991 and Henderson &
Menikoff 1998). However, an oMR is theoretically admissible if and only if the two
slipstreams assemble an overall converging stream tube. An oMR (InMR + DiMR)
configuration was first experimentally demonstrated by Li et al. (1999). Here, wRR,
sRR and DiMR denote weak RR, strong RR and direct MR, respectively.

There are two Prandtl–Meyer expansion fans (pm1 and pm2) emanating from
the trailing edges, as shown in figure 1(a, b), respectively. They are necessary to let
the locally subsonic flow downstream of the reflection point of an oRR (wRR +
sRR) configuration or the Mach stem of an oMR configuration match the overall
supersonic flow conditions. For example pm1 and pm2 reach and change the direction
of slipstreams s1 and s2 to form a converging–diverging stream tube as shown
in figure 1(b). It should be noted that the boundary condition given by (1.2) is
insufficient for a stable MR configuration, and another necessary condition is a
converging–diverging stream tube following the Mach stem m. Clearly, the Prandtl–
Meyer expansion fans play an important role in the configuration of the asymmetric
shock wave reflection through the converging–diverging stream structure. It has been
shown that disturbances in the free stream flow (see Kudryavtsev et al. 2002) and the
three-dimensional nature of the flow field can have a major effect on the transition
(see Skews 1997, 2000). In addition, the numerical work of Ben-Dor et al. (1999)
considered the effects of the downstream pressure in the wake flow of the wedge.
The agreement between the experimental and analytical results concerning RR → MR
transition angles is surprisingly good according to the study of Li et al. (1999). In
contrast, the experimental RR → MR transition angles are approximately 2.5◦ lower
than the detachment criterion in Sudani et al. (2002). Sudani et al. (2002) assumed that
three-dimensional effects in the experiments of Li et al. (1999) delay the RR → MR
transition. In fact, different translational or rotational mechanisms of the wedges were
used in their experimental set-ups. As a consequence, the different movement of the
expansion fans might be an additional cause for the reported discrepancy. Dynamic
effects due to the transient motion or rotation of the wedges can make the transition
angle slightly different from the theoretical criteria (see Mouton & Hornung 2007;
Naidoo & Skews 2007). However, the fundamental physics behind the dynamic effects
hasn’t been well explained.

Both the RR and the MR wave configurations are stable in the dual-solution
domain based on the principle of minimum entropy production (see Li & Ben-
Dor 1996). On the other hand, the triple-shock theorem implies that the Mach
configuration contains higher entropy compared to that of the RR. Based on
thermodynamic stability, a higher entropy configuration would be preferred for a
continuous transition. This provides heuristic motivation for the von Neumann point
as the MR → RR transition criterion (see Henderson et al. 1991). Hornung (1997)
and Sudani & Hornung (1998) presented an alternative means for stability analysis of
RR and MR wave configurations and reached the same conclusion as Li & Ben-Dor
(1996). Sudani & Hornung (1998) proposed a minimum disturbance criterion for the
RR → MR transition, using an analogy based on the potential energy of a particle on
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a surface, which was earlier than the detachment criterion of Li et al. (1999). The two
criteria are identical for a symmetric shock reflection but different for an asymmetric
reflection.

It is interesting to note that the motivation of studying the hysteresis phenomenon
in the transition between RR and MR were purely academic. However, it was
eventually found that the existence of the hysteresis process has a critical impact
on the performance of the supersonic intake in an air-breathing propulsion system.
Compared with the analytical study of Li et al. (1999), the RR → MR transition for the
reflection of asymmetric shock waves is further discussed by applying the classical two-
and three-shock theories of von Neumann (1943) in the present study. Computations
are conducted to evaluate the effects of the expansion fans and downstream flow
conditions on the RR → MR transition. Theoretical and numerical analyses are
further performed to understand the physics behind the discrepancies reported in
previous studies.

2. Shock polar analysis
It is useful to present shock interactions, using pressure-deflection polar diagrams,

in which the pressure jump across a shock wave is plotted against the flow deflection
angle. Briefly, the shock polar represents the locus of all flow states that can be
obtained by passing through any oblique shock for a given flow Mach number. The
entire region behind a planar shock wave is then represented by a single point on a
(p–θ) diagram. The maximum angle that a flow can be turned by an oblique shock
is easily seen: this is the point of maximum deflection that separates the polar into
weak and strong regions. Just below this point on the shock polar is the sonic point.
Above the sonic point are solutions that produce a subsonic flow behind the oblique
shock, and below this point lie solutions that produce a supersonic flow behind the
oblique shock wave. In cases with curved shock waves, the shock polar is correct only
in a vanishingly small region about the interaction point.

In figure 3, the shock polar combination represents the process of the RR ↔ MR
transition and the hysteresis phenomena according to the wedge assembly shown in
figure 1. Also in figure 3, R0 and R′

1 correspond to shock waves in the free stream
flow and the upper reflected shock r1, respectively. The sequential polars R1 to R5

correspond to r2 as θ2 increases. In the RR → MR transition process, there is a
critical wedge angle θ2 = θS

2 at which the loci intersect at the sonic point on the shock
polar of RS , as shown in figure 4(a). Beyond θS

2 the flow behind the reflected shock
wave r2 becomes locally subsonic. This wave configuration is sensitive to disturbances
either in the free stream flow or from the downstream flow field and is likely to
cause an RR → MR transition. Hereafter, this critical condition is hypothesized as
the sonic-point criterion for the RR → MR transition of the reflection of asymmetric
shock waves. However, a subsonic RR wave configuration may be admissible due the
upstream influence of the expansion waves slightly downstream of the reflection point.
It can be maintained until θ2 = θMD

2 at which angle the flows behind both reflected
shock waves r1 and r2 reach their maximum-deflection conditions. This special RR
wave configuration features the curvature of reflected shock waves and the smooth
variation of flow parameters in the zone surrounded by the reflected shock waves
and expansion waves. Below θMD

2 , the loci of flow Mach number intersect as shown
by dashed lines in figure 4. It implies an identical flow deflection for both (3) and (4)
zones (see the labels in figure 1a). In other words, the flows on both sides of the slip
layer are parallel to each other. Hereafter, this critical condition at the angle θMD

2 is
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1 . (RS

corresponds to the sonic-point criterion; RMD corresponds to the maximum-deflection criterion;
the symmetric condition refers to a certain wedge angle θ

sym
1 , at which the sonic point of the

reflected shock polar lies on the symmetry line of the polar for the free stream flow).

hypothesized as the maximum-deflection criterion for the RR → MR transition of the
reflection of asymmetric shock waves. Computations will be conducted in the next
section to confirm and explain the existence of these RR wave configurations which
are theoretically impossible inside the parameter domain of (θD

2 , θMD
2 ). Obviously,

θS
2 <θD

2 <θMD
2 . It is important to note that the required sonic point that determines

the above-mentioned sonic-point criterion switches to the sonic point of the r1 polar
(R′

1) when θ1 >θ
sym
1 as shown in figure 4(b). Here, θ

sym
1 corresponds to a critical value

of θ1 at which the sonic point of the reflected shock polar lies on the symmetry line
of the polar for the free stream flow.

The flow deflection angle θ and the pressure ratio ξ across an oblique shock wave
can be related to the Mach number M ahead of the shock wave and the shock angle
φ (see Han & Yin 1993), respectively, as follows:

θ = f (γ, M, φ) = tan−1

{
2 cotφ(M2 sin2 φ − 1)

M2(cos 2φ + γ ) + 2

}
, (2.1)

ξ = g(γ, M, φ) = 1 +
2γ

γ + 1
(M2 sin2 φ − 1). (2.2)

Here, γ is the ratio of specific heat capacities, and the shock angle sin−1(1/M) � φ �
π/2. The maximum-deflection criterion for the RR → MR transition shown in figure 4
can be mathematically expressed as

�θMD
1 + �θMD

2 = θ1 + θMD
2 , (2.3)

where the maximum-deflection angle of the Mj (j = 1 and 2 for the upper and the
lower reflections, respectively) shock polar can be obtained by

�θMD
j = f (γ, Mj , φ), sin−1

(
1

Mj

)
� φ �

π

2
. (2.4)
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Here, based on the basic shock wave relations, Mj is given by

Mj = h(γ, M∞, φj ) =

{
M2

∞ + 2
γ −1

2γ

γ −1
M2

∞ sin2 φj − 1
+

M2
∞ cos2 φj

γ −1
2

M2
∞ sin2 φj + 1

} 1
2

. (2.5)

For a given angle θ1, θ
MD
2 that satisfies the maximum-deflection criterion for RR → MR

transition can be obtained from (2.3), using an iterative process.
Similarly, the sonic-point criterion for the RR → MR transition shown in figure 4

can be theoretically expressed as

ξ 0
1 ξS

1 = ξ 0
2 ξS

2 , (2.6)

�θS
1 + �θS

2 = θ1 + θS
2 , (2.7)

where ξ 0
j = g(γ, M∞, φj ) and ξS

j = g(γ, Mj , φ
S
j ). Here, j = 1 and 2; the superscript ‘0’

corresponds to the free stream flow; and ‘S ’ denotes the sonic point of a shock polar.
Again, for a given angle θ1, θS

2 satisfying the sonic-point criterion for the RR → MR
transition can be uniquely defined by iteratively solving (2.6) and (2.7). It is important
to note again that the sonic point of a shock polar, as clearly indicated by the
graphical construction in figure 4(a, b), is on the R′

1 shock polar when θ1 >θ
sym
1 , while

it should be located upon the RS shock polar when θ1 <θ
sym
1 .

The RR → MR transition curves for the maximum-deflection criterion given by
(2.3) and the sonic-point criterion given by (2.6) and (2.7) are drawn as dashed lines
in figure 5 in the (θ1, θ2) plane for M∞ = 4.96. For a direct comparison, the detachment
line (a tangent-point criterion) and von Neumann line are given as solid lines in the
same figure. The details of the detachment criterion for the RR → MR transition and
the von Neumann criterion for the MR → RR transition associated with asymmetric
shock reflections can be found in § 2.3 of Li et al. (1999). It can be observed in figure 5
that in the vicinity of the symmetric condition in which θ

sym
1 = 27.7◦ and at the zero

and maximum-deflection angles, the differences among above-mentioned RR → MR
transition criteria are negligible. However, significant discrepancy exists over the rest
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of the parameter domain. It is clearly demonstrated that the RR → MR transition
line of the detachment (tangent-point) criterion lies between the maximum-deflection
and the sonic-point criteria.

Comparisons among the above-mentioned RR → MR transition lines and the
experiments for the M∞ =4.96 flow in the (θ1, θ2) plane are shown in figure 6.
The experimental data are extracted from the figure 9 of Li et al. (1999) and
denoted here using the same symbols as in the original. Most of the experimental
points associated with the RR → MR transition scatter in the parameter domain
bounded by the transition lines of the maximum-deflection and the sonic-point
criteria in figure 6. Therefore, the maximum-deflection and the sonic-point criteria
can explain the discrepancy between the experimental points and the transition line
of the detachment criterion.

It is interesting to note that the disagreement between the experiments and the
analytically predicted RR → MR transition angles appears relatively more significant
in the vicinity of the symmetry condition, i.e. θ

sym
1 = 27.7◦ for the M∞ = 4.96 flow.

It becomes apparent when referring to the concept of the threshold �p = pθmax −
psonic (see Henderson 1990; Henderson & Menikoff 1998). As shown in figure 7, the
method of calculating �p in the present investigation depends on the value of θ1 as
the sonic point, for the sonic-point transition criterion is located on the R′

1 shock polar
when θ1 > θ

sym
1 and switches to the RS

2 shock polar when θ1 < θ
sym
1 . If the magnitude of

any disturbance in the flow field exceeds �p, the RR → MR transition can be triggered
below the theoretical criterion. The solid lines in figure 8 represent the threshold in
the (θ1 − �p) parameter domain for the RR → MR transition of asymmetric shock
waves for M∞ = 4.96 and M∞ =4.015 flows. From the figure it can be found that the
closer to the symmetric condition a polar is, the smaller �p becomes. Therefore, in the
vicinity of θ

sym
1 , the RR wave configuration is relatively more sensitive to disturbance

and consequently more likely to advance the transition into an MR configuration.
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This conclusion appears to be consistent with the experimental results of Li et al.
(1999). On the other hand, the fact that the experimental RR → MR transition angle
at θ1 = 18◦ is beyond the θD

2 line and very close to the θMD
2 line can also prove

the above conclusion. Another instance is that the RR → MR transition angles for
symmetric reflections are approximately 2.1◦ lower than the theoretical detachment
criterion (see Chpoun et al. 1995), which has been ascribed to three-dimensional
effects and perturbation in the wind tunnels (see Chpoun et al. 1995; Sudani et al.
2002). However, it was noted that three-dimensional effects by themselves are not
sufficient to promote hysteresis and that the type of the wind tunnel has a significant,
and unfortunately not yet understood, influence on the occurrence of hysteresis for
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RR ↔ MR transitions in steady flows (see Ben-Dor et al. 2002). Based upon the
present analysis, the relatively smaller threshold for the RR → MR transition in
the vicinity of the symmetry condition may be an additional reason for the earlier
RR → MR transition in the presence of the noise inherent in supersonic test flows. The
fact that better agreement between experimental and theoretical results for asymmetric
reflections was achieved with the same facility as that of Li et al. (1999) supports this
conclusion. It can also be found from figure 8 that the smaller the Mach number of
the free stream flow, the smaller the threshold. This might be an additional cause of
the earlier RR → MR transition reported by Sudani et al. (2002) in which the flow
Mach number M∞ =4.015 is less than that used in the experiments of Li et al. (1999).

The analysis in this section can be summarized as follows: The theoretical
RR → MR transition angle for an asymmetric shock wave reflection lies inside the
parameter domain bounded by the sonic-point criterion line and the maximum-
deflection criterion line. However, in the vicinity of the symmetric reflection condition,
the RR → MR transition is likely advanced by disturbance from the free stream or
downstream flow field. If the reflection condition is away from the symmetry condition
and reaches a maximum threshold, the RR → MR transition angle is determined
mainly by the maximum-deflection criterion. In the coming section, computations are
conducted to verify the above hypothesis and the analytical results.

3. Numerical study
It was noted that the MR → RR transition angle is strongly dependent on the

grid size in the vicinity of the reflection point (see Ivanov et al. 2002; Sudani et al.
2002) in computations. On the other hand, the RR → MR transition angle does not
depend on the grid resolution assuming sufficient grid density but strongly depends
on the numerical dissipation inherent in any shock-capturing scheme (see Ivanov et al.
1998; Chpoun & Ben-Dor 1995; Ben-Dor et al. 2002). In the following sections, only
the RR → MR transition will be numerically simulated according to the transition
analysis mentioned in the previous section. For numerical algorithms in the present
study, Euler equations for a perfect gas with γ = 1.4 are discretized using the second-
order dispersion-controlled dissipative (DCD) scheme proposed by Jiang, Takayama
& Chen (1995) and reviewed by Jiang (2004). The principle of DCD scheme aims
at removing non-physical oscillation across strong discontinuities by making use of
the dispersion characteristics of the modified equation instead of adding artificial
viscosity. A third-order Runge–Kutta scheme is used for time integration.

The computational domain is schematically shown in figure 9. A uniform supersonic
flow with a given Mach number is imposed on the left boundary, while a supersonic
outflow condition is set on the right boundary. Upper and lower boundaries are
treated as non-reflecting interfaces, while a slip condition is imposed on the wedge
surface. During each series of computations, the upper wedge angle is fixed, while the
lower wedge angle is slowly varied to approximate the rotation around the leading
edge. The previously converged flow is taken as the initial condition, as the geometry
parameters vary. The numerical flow field is considered converged to a steady state
when the positions of all the shock waves remain unchanged within a certain number
of iterations. However, the Kelvin–Helmholtz slip layers (see Rikanati et al. 2006),
which are unsteady in nature, can be captured in some cases for an overall MR
configuration. Fortunately, this unsteadiness occurs in the supersonic region of the
converging–diverging stream tube bounded by the slipstreams. It is neglected in the
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convergence criteria, as it has an insignificant influence on the position of the MR
wave configuration.

3.1. Curved RR wave patterns

As shown in figure 4, there is no intersection between the shock polars of both
reflected shock waves in the graphical construction if the reflection occurs above
the detachment condition and below the maximum-deflection condition. For an ideal
reflection of shock waves, this leads to an overall MR solution. On the other hand,
an overall RR wave pattern followed by a subsonic flow pocket is admissible for a
reflection configuration with curved shock waves. The wave patterns are not steady
but may be pseudo-steady (see Henderson 1990; Henderson & Menikoff 1998). In
the reflection of shock waves induced by two asymmetrically posed wedges, the
Prandtl–Meyer expansion fans following the reflection point help to provide sufficient
boundary conditions for a steady overall RR with curved shock waves or strong
solutions. A series of computations is conducted for a flow with M∞ = 5.04. The angle
of the upper wedge is kept constant at θ1 = 22.42◦ and L1 = L2 = 0.55H (as shown in
figure 9). Several important wedge angles associated with this series of computations
are θ

sym
1 = 27.7◦, θS

2 = 31.2◦, θD
2 = 31.8◦ and θMD

2 = 32.3◦. The variation sequence of θ2

is θ2 = 30◦ → 31.5◦ → 32◦ → 32.3◦ → 32.6◦ → 32.3◦ → 31.5◦.
The sequential wave patterns shown in figure 10 start from θ2 = 30◦ at which angle

an overall RR with both straight reflected shock waves in the vicinity of the reflection
point was achieved. The wave configuration is an oRR (wRR + wRR) type with
a completely supersonic flow behind the two reflected shock waves (figure 10a, b).
When θ2 is increased to θ2 = 32.3◦ = θMD

2 > θD
2 = 31.8◦, the overall RR is maintained

as shown in figure 10(c). However, the oRR features the curvature of reflected shock
waves followed by a subsonic flow pocket as shown in figure 10(d ). This wave structure
has also been illustrated by Li et al. (1999) under the detachment condition and was
denoted as oRR (wRR + sRR). At θ2 = 32.6◦ > θMD

2 , an RR can no longer exist and
changes to an overall MR wave configuration, as shown in figure 10(e, f ).
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Figure 10. Numerical contours of density (left) and Mach number (right), illustrating the
reflection wave configuration: (a, b) overall RR with both straight shock waves when θ2 = 30◦;
(c, d ) overall RR with curved shock waves when θ2 = 32.3◦; (e, f ) overall MR when θ2 = 32.6◦;
(M∞ = 5.04, θ1 = 22.42◦, L1 = L2 = 0.55H , mesh nodes 801 × 801).

Three more computations for θ2 = 32.3◦ on different grids with 1001 × 1001,
1201 × 1201, 1601 × 1601 mesh nodes reach an identical oRR solution with a locally
curved wave structure as shown in figure 11 by Mach number contours. This implies
that the oRR wave configuration at θMD

2 , which is theoretically impossible, cannot be
ascribed to the numerical viscosity.
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(a) (b) (c)

Sonic line Sonic line Sonic line

Figure 11. Numerical contours of Mach number illustrating grid independence; Mesh point
(a) 1001 × 1001; (b) 1201 × 1201; (c) 1601 × 1601 (M∞ = 5.04, L1 = L2 = 0.55H , θ1 = 22.42◦,
θ2 = 32.3◦).

(a) (b) (c)

Figure 12. Numerical contours of pressure illustrating the smooth variation of pressure
and curved shock wave structure: (a) θ2 = 30.0◦; (b) θ2 = 31.5◦; (c) θ2 = 32.3◦ (M∞ = 5.04,
L1 =L2 = 0.55H , θ1 = 22.42◦, mesh nodes 801 × 801).

Figure 12 shows the pressure contours in the near field about the interaction point
for θ2 = 30.0◦, θ2 = 31.5◦, θ2 = 32.3◦. Differences can be found in the region bounded
by the reflected shock waves and the first characteristic of the expansion waves. In
figure 12(a), where θ2 < θS

2 , the region is completely supersonic with straight reflected
shock waves and a uniform pressure field which can be theoretically predicted by the
intersection of shock polars. When θ2 slightly exceeds θS

2 , as shown in figure 12(b),
the lower reflected shock becomes slightly curved. If θ2 further increases to θMD

2 ,
as shown in figure 12(c), the pressure in the flow region smoothly varies between
two pressure ratios corresponding to the maximum-deflection conditions of the (p–θ)
loci for both reflected shock waves. It can be confirmed from these computations
that the curved shock segment along with the smooth change of pressure makes an
oRR wave structure possible at θD

2 � θ2 � θMD
2 . Besides the three-dimensional effects,

which likely contaminate the results as mentioned by the authors, the curved wave
structures can be an additional explanation for the experimental transition angle
beyond theoretical value as shown in figure 9 of Li et al. (1999).

3.2. Effects of the expansion fans

A series of computations is conducted to evaluate the effects of the location of the
expansion fans. The upstream effects of the expansion fans on the reflection can
be weakened by increasing the wedge lengths. The upper and lower wedge angles
are 22.4◦ and 32.3◦, respectively. The sonic line in the oRR wave configuration
moves downstream following the expansion fans, as shown in figure 13(a, b), where
L1 = L2 = 0.5H and L1 =L2 = 0.55H , respectively. Setting the wedge lengths to 0.6H

triggers an RR → MR transition, as illustrated by figure 13(c). However, the reflected
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(a) (b) (c)

Sonic line

Figure 13. Numerical contours of flow Mach number illustrating the effects of the location
of expansion fans: (a) L1 = L2 = 0.5H ; (b) L1 = L2 = 0.55H ; (c) L1 =L2 = 0.60H (M∞ = 5.04,
θ1 = 22.42◦, θ2 = 32.3◦, mesh nodes 1601 × 1601).

(a) (b)

Figure 14. Numerical contours of density illustrating the effects of transient movement of the
expansion fans on the RR → MR transition: (a) overall RR when L1 =L2 = 0.5H ; (b) overall
MR when L1 and L2 are decreased from 0.5H to 0.475H (M∞ = 5.04, θ1 = 22.42◦, θ2 = 32.3◦,
mesh nodes 1601 × 1601).

shock wave r1 (see notation in figure 1) reaches and is reflected from the upper
wedge surface. The re-reflected shock wave interacts with the slipstream s1, which
results in a series of disturbance propagating upstream in the subsonic flow domain.
Here, figure 13(c) presents a transient oMR wave pattern, as the inviscid simulation
doesn’t provide enough dissipative mechanism against the disturbance. These different
solutions shown in figure 13(a–c) can lead to the conclusion that the upstream effects
of the expansion waves delay the RR → MR transition.

The location of the expansion fans affects the transition condition. In addition,
the transient movement of the expansion fans also plays a role. Here, the transient
movement of the expansion fans is approximated by artificial change of the wedge
lengths. The oRR wave configuration is shown by density contours in figure 14(a)
for θ1 = 22.42◦, θ2 = 32.3◦ and L1 = L2 = 0.5H . Using this solution as the initial
condition and slightly decreasing the wedge lengths from 0.5H to 0.475H , a sequential
computation reaches an oMR solution as shown in figure 14(b). Further computations
indicate that RR → MR transition cannot be realized by transiently changing the
wedge lengths if θ2 is less than θS

2 . This coincides with the experimental study of
Li et al. (1999) in which the data scatter inside (θS

2 , θMD
2 ) for an upper wedge angle

θ1 = 22◦. According to figure 8, the threshold for an RR → MR transition about this
wedge angle is large enough to bear relatively intensive disturbance.
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(a) (b)

Figure 15. Numerical contours of density illustrating the reflection wave configuration: (a)
overall RR when L1 = L2 = 0.55H ; (b) overall MR when L1 and L2 are decreased to 0.45H ;
(M∞ = 5.04, θ1 = 28◦, θ2 = 26.5◦, mesh nodes 801 × 801).

3.3. Asymmetry vs symmetry

In the following series of simulations, the upper wedge angle is θ1 = 28◦, which is very
close to the symmetry angle θ

sym
1 = 27.7◦, and the lower wedge angle is θ2 = 26.5◦. The

critical angles associated with different RR → MR transition criteria are θS
2 = 27.5◦

and θT
2 ≈ θMD

2 = 27.65◦. As illustrated in figure 8, the threshold of the RR → MR
transition is relatively small under the present flow and geometry conditions.

The computation when L1 = L2 = 0.55H is undoubtedly converged at the weak
solution of shock wave reflection according to the shock polar analysis. The oRR
wave pattern is shown in figure 15(a) by density contours. After the wedge lengths
are reduced to 0.5H , the overall RR wave configuration can be maintained. A further
reduction of the wedge lengths to 0.45H triggers the RR → MR transition, as shown in
figure 15(b). It should be noted that the fluid flow shown in figure 15(a) is completely
supersonic, and both reflected shock waves are straight in the vicinity of the reflection
point. In other words, the numerical disturbance generated by the transient movement
of the expansion waves is strong enough to trigger an RR → MR transition. Here,
the lower wedge angle is lower than the sonic-point and the detachment criteria.

It can be concluded from above computational results that an additional cause
for the earlier RR → MR transition reported by Sudani et al. (2002) may be the
disturbance generated by the transient movement of the expansion fans. In their
experimental set-up, the upper wedge was varied in both the vertical and horizontal
directions, which should accordingly cause a movement of the expansion fan,
emanating from the trailing edge of the wedge. The second important aspect is that
the wedge arrangements in the experiments are relatively close to the corresponding
symmetric reflection condition. An earlier RR → MR transition was also reported by
Chpoun et al. (1995) in their experiments concerning hysteresis in the reflection of
symmetric shock waves. Moreover, the free stream flow Mach number of the test
facility used by Sudani et al. (2002), a blowdown-type wind tunnel, is small compared
to that of the SH2 wind tunnel used by Li et al. (1999), which may be the third critical
aspect. Considering the threshold for the RR → MR transition and the effects of the
expansion waves, it is not surprising that the good agreement reported by Li et al.
(1999) and the disagreement reported by Sudani et al. (2002) between experimental
and theoretical results are both reasonable.
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Figure 16. Schematic illustration of shock wave patterns in the interactions of shock waves
on double-wedge-like geometries: (a) double-wedge-like geometries; (b), (c) and (d ) three types
of wave patterns associated with the interaction of shock waves of opposite families at distinct
wedge differences, �θ = θ2 − θ1 (Solid line: shock wave; dashed line: slipstream; dashed-dotted
line: expansion wave).

3.4. Advanced RR → MR transition caused by a transverse wave

Shock/shock interactions on double-wedge-like geometries, as shown in figure 16(a),
in a hypersonic flow are considered a fundamental research problem related to
hypersonic flights. Edney (1968) used shock polar diagrams and classified the
interactions of oblique shock waves and bow shocks on a cylinder. Through his
experimental research, it was realized that abnormally high heating and pressure
loads can be induced by shock/shock interactions on hypersonic vehicles and that a
small variation in the geometry can lead to a major change in the overall flow structure.
Olejniczak, Wright & Candler (1997) numerically studied shock interactions and their
transition on double-wedge-like geometries. Recently, Ben-Dor et al. (2003) revealed
that hysteresis and self-induced oscillations exist in the shock flow pattern for various
angles of inclination of the second wedge.

A Type V (following Edney’s taxonomy) wave configuration occurring within
a certain scope of �θ can be further divided into three subclasses, as shown in
figures 16(b–d ). In the first case, the leading shock wave (CI ) emanating from the
leading edge of the second wedge and the shock wave (TUI ) originating from the
upper triple point TU undergo an overall RR. Moreover, one of the reflected shock
waves, IR, is re-reflected from the second wedge surface in a regular type. In the
second case, an MR occurs over the second wedge surface instead of the RR in the
previous case, while the RR wave pattern at point ‘I ’ is maintained. In contrast, an
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(a) (b) (c) (d )

Figure 17. Density contour illustrating numerical solutions for the shock/shock interactions
on double-wedge-like geometries: (a) �θ = 26.2◦ with a regular reflection of shock waves TUI
and CI ; (b) �θ = 26.65◦; (c) �θ = 27.1◦; (d ) �θ = 28.3◦ with a Mach-type reflection of shock
waves TUTM and CTL(M∞ = 9, θ1 = 15◦).

overall MR occurs when �θ is increased slightly in the last case. In this subsection,
the mechanism that advances the RR → MR transition is numerically investigated.

The flow domain is shown in figure 16(a). The shock wave interaction phenomena
depend on the relevant parameters which are, under the inviscid flow hypothesis,
the free stream Mach number M∞, the ratio of the specific heats γ , the first wedge
length L1 and the wedge angles θ1 and θ2 or alternatively the difference between the
two wedge angles, �θ = θ2 − θ1. In the following simulations, γ is 1.4 for a perfect
diatomic gas, L1 = 5 cm, M∞ =9 and θ1 = 15◦, while θ2 or �θ varies continuously
for different cases. Under these conditions, the flow Mach number behind the first
leading shock is 5.04, which is identical to the free stream flow Mach number for the
cases illustrated in former subsections. The computational domain is defined by the
rectangular region bounded by the dashed-dotted lines, as shown in figure 16(d ), and
is turned around the second wedge corner in a clockwise direction by an angle of θ2.
The inflow conditions for the free stream flow and the flow behind the first leading
shock, ATU , can be specified by oblique shock wave relations.

The wave configurations for the shock/shock interactions over the second wedge
surface are shown in figure 17(a–d ), and the shock polar solutions are given in
figure 18(a–c). All of the �θ angles are in the dual-solution domain according to
shock polar analysis. At �θ =26.2◦, as shown in figure 16(b) and figure 17(a), the
reflection of shock waves TUI and CI as well as that of shock wave IR over the wedge
surface are both regular. In this case, the flow deflection angles and pressure increases
in flow regions (1), (2), (3, 3’) and (4) (figure 16b) can also be theoretically defined.
However, due to the effects of a series of expansion waves emanating from point O,
the flow conditions in regions (4’) and (5) cannot be directly obtained from the shock
polar solution. The reflection of IR changes to a Mach-type reflection, as shown in
figure 17(b), when �θ is increased to 26.65◦. In this case, the flow deflection angles
and pressure ratios in all of the labelled regions in figure 16(c) can be determined
on the shock polars, as shown in figure 18(a). At a critical angle of �θ =27.1◦, the
triple-point TW and the reflection point I, as well as the shock waves IO and TWP ,
coincide, as shown in figure 17(c). This is also the strong solution labelled by (6)
in figure 18(b). According to the shock entropy theorem, this solution is generally
unstable. However, the above-mentioned wave pattern can be maintained here due
to the converge–diverge stream tube which is formed between the slipstream and the
wedge surface. A further increase in �θ leads to an RR → MR transition, as shown
in figures 17(d ) and 18(c) and in the schematics of figure 16(d ).

Thus, the RR → MR transition angle �θ = 27.2◦ is smaller than the corresponding
detachment criterion θD

2 = 31.8◦. Here, the shock wave TWP plays an important role
as a trigger for the advanced transition. It is also interesting to note that within the
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Figure 18. Shock polar solutions for the shock/shock interactions on double-wedge-like
geometries: (a) �θ = 26.65◦; (b) �θ = 27.1◦; (c) �θ = 28.3◦ (M∞ = 9, θ1 = 15◦).

small scope of the wedge angle difference of 27.2◦ � �θ � 28◦, the wave configuration
undergoes a periodic oscillation among all wave patterns given in figure 17. Ben-Dor
et al. (2003) revealed that oscillation of the shock wave patterns is associated with
the interaction of shock waves and slipstreams emanating from the triple-points.
Consequently, the second wedge surface is exposed to oscillating aerodynamic forces
and heating loads.

4. Conclusions
The RR → MR transition is analytically and numerically studied for the reflection

of asymmetric shock waves in steady flows. The RR → MR transition can occur
between the sonic-point and maximum-deflection conditions in which the location
and transient movement of the expansion waves, which are inherent flow structures,
play an important role. Based on these two critical conditions and the threshold for
the RR → MR transition, it has been found that both the good agreement and the
disagreement between experimental and theoretical results found in previous studies
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are realistic consequences of the nature underlying the reflection of asymmetric shock
waves.

Two-dimensional inviscid computations verify an overall RR with locally curved
wave structures and smooth change of pressure at the maximum-deflection angle. It
is also found that an RR → MR transition can be triggered by the rapid movement
of the trailing edge. Moreover, in the vicinity of the symmetric reflection condition,
the movement of expansion fans is more effective due to the relatively small threshold
for the RR → MR transition compared to that in an asymmetric reflection condition.
Numerical results also indicate that the RR → MR transition can be advanced by a
transverse wave from the downstream flow field in the shock/shock interaction on a
double-wedge-like geometry in a steady hypersonic flow.

The RR → MR transition process and the hysteresis phenomenon have a significant
impact on the performance of the supersonic intake of an air-breathing propulsion
scheme. Therefore, the present RR → MR transition analysis is useful for a better
understanding of the physics associated with the reflection of asymmetric shock waves
as well as for the intake flow of a supersonic/hypersonic air-breathing propulsion
system.
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